454 research outputs found

    Influence of Organic Enrichment and Spisula subtruncata (da Costa, 1778) on Oxygen and Nutrient Fluxes in Fine Sand Sediments

    Full text link
    [EN] The role of labile organic material and macrofaunal activity in benthic respiration and nutrient regeneration have been tested in sublittoral fine sand sediments from the Gulf of Valencia (northwestern Mediterranean Sea). Three experimental setups were made using benthic chambers. One experiment was performed in-situ through the annual cycle in a well-sorted fine sand community. The remaining experiments were carried out with mesocosms under laboratory conditions: one with different concentrations of organic enrichment (mussel meat and concentrated diatoms culture), and the other adding two different densities of the endofaunal bivalve Spisula subtruncata. Biochemical variables in surface sediment and changes in oxygen consumption and nutrient fluxes throughout incubation period were studied in each experiment. In the in situ incubations, dissolved oxygen (DO) fluxes showed a strong correlation with sedimentary biopolymeric fraction of organic carbon. Organic enrichment in the laboratory experiments was responsible for increased benthic respiration. However, sediment response (expressed as DO uptake and dissolved inorganic nitrogen—DIN—release) between oligotrophic and eutrophic conditions was more intense than between eutrophic and hypertrophic conditions. S. subtruncata abundances close to 400 and 850 ind m−2 also intensified benthic metabolism. DO uptake and DIN production in mesocosms with added fauna were between 60 and 75 % and 65–100 % higher than in the control treatment respectively. The results of these three experiments suggest that the macrobenthic community may increase the benthic respiration by roughly a factor of two in these bottoms, where S. subtruncata is one of the dominant species. Both organic enrichment and macrobenthic community in general, and S. subtruncata in particular, did not seem to have a relevant role in P and Si cycles in these sediments.This research was supported by the Conselleria d'Educacio (Generalitat Valenciana). We are very grateful for the valuable comments of anonymous reviewers on previous version of the manuscript.Sospedra, J.; Falco, S.; Morata, T.; Rodilla, M. (2016). Influence of Organic Enrichment and Spisula subtruncata (da Costa, 1778) on Oxygen and Nutrient Fluxes in Fine Sand Sediments. Estuaries and Coasts. doi:10.1007/s12237-016-0174-1SAller, R.C., and J.Y. Aller. 1998. The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. Journal of Marine Research 56: 905–936.Aminot, A., and M. Chaussepied. 1983. Manuel des analyses chimiques en milieu marin. Brest: Centre National pour l’Exploitation des Oceans.Arnosti, C., and M. Holmer. 2003. Carbon cycling in a continental margin sediment: contrasts between organic matter characteristics and remineralization rates and pathways. Estuarine, Coastal and Shelf Science 58: 197–208.Baptist, M.J., and M.F. Leopold. 2009. The effects of shoreface nourishments on Spisula and scoters in The Netherlands. Marine Environmental Research 68: 1–11.Bartoli, M., D. Nizzoli, P. Viaroli, and E. Turolla. 2001. Impact of Tapes philippinarum farming on nutrient dynamics and benthic in the Sacca di Goro. Hydrobiologia 455: 203–212.Bellan-Santini, D., J.C. Lacaze, and C. Poizat. 1994. Les biocénoses marines et littorals de Méditerranées, synthèse, menaces et perspectives, Patrimoines naturels, 19. Paris: Secrétariat de la fauna et de la flore, MNHN.Beninger, P.G., and S.D. St-Jean. 1997. The role of mucus in particle processing by suspension-feeding marine bivalves: unifying principles. Marine Biology 129: 389–397.Biles, C.L., M. Solan, I. Isaksson, D.M. Paterson, C. Emes, and D.G. Raffaelli. 2003. Flow modifies the effect of biodiversity on ecosystem functioning: an in situ study of estuarine sediments. Journal of Experimental Marine Biology and Ecology 285-286: 165–177.Borja, A., J. Franco, and V. Pérez. 2000. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin 40: 1100–1114.Boudreau, B.P., M. Huettel, S. Forster, R.A. Jahnke, A. McLachlan, J.J. Middelburg, P. Nielsen, F. Sansone, G. Taghon, W. Van Raaphorst, I. Webster, J.M. Weslawski, P. Wiberg, and B. Sundby. 2001. Permeable marine sediments: overturning an old paradigm. EOS. Transactions American Geophysical Union 82: 133–136.Braber, L., and S.J. De Groot. 1973. The food of five flatfish species (Pleuronectiformes) in the southern North Sea. Journal of Sea Research 6: 163–172.Canal-Verges, P., M. Vedel, T. Valdemarsen, E. Kristensen, and M.R. Flindt. 2010. Resuspension created by bedload transport of macroalgae: implications for ecosystem functioning. Hydrobiologia 649: 69–76.Canfield, D.E., B.B. Jorgensen, H. Fossing, R. Glud, J. Gundersen, N.B. Ramsing, B. Thamdrup, J.W. Hansen, L.P. Nielsen, and P.O.J. Hall. 1993. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology 113: 27–40.Carlsson, M.S., R.N. Glud, and J.K. Petersen. 2010. Degradation of mussel (Mytilus edulis) fecal pellets released from hanging long-lines upon sinking and after settling at the sediment. Canadian Journal of Fisheries and Aquatic Sciences 67(9): 1376–1387.Castelli, A., C. Lardicci, and D. Tagliapietra. 2004. Soft-bottom macrobenthos. In Mediterranean Marine Benthos: A Manual of methods for its sampling and study Vol. 11 (Suppl. 1), ed. Maria Cristina Gambi, and Marco Dappiano, 99–131. Genova: Biologia Marina Mediterranea.Clark, R.B. 2002. Marine pollution, 5th edn. Oxford: Oxford University Press.Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.Colijn, F., and V.N. de Jonge. 1984. Primary production of microphytobenthos in the Ems-Dollar Estuary. Marine Ecology Progress Series 14: 185–196.Cotano, U., and F. Villate. 2006. Anthropogenic influence on the organic fraction of sediments in two contrasting estuaries: a biochemical approach. Marine Pollution Bulletin 52: 404–414.Danovaro, R., and M. Fabiano. 1997. Seasonal changes in quality and quantity of food available for benthic suspension-feeders in the Golfo Marconi (North-western Mediterranean. Estuarine, Coastal and Shelf Science 44: 723–736.Danovaro, R., D. Marrale, N. Della Croce, P. Parodi, and M. Fabiano. 1999. Biochemical composition of sedimentary organic matter and bacterial distribution in the Aegean Sea: trophic state and pelagic-benthic coupling. Journal of Sea Research 42: 117–129.Dauer, D.M. 1993. Biological criteria, environmental health and estuarine macrobenthic community structure. Marine Pollution Bulletin 26(5): 249–257.Dauwe, B., P.M.J. Herman, and C.H.R. Heip. 1998. Community structure and bioturbation potential of macrofauna at four North Sea stations with contrasting food supply. Marine Ecology Progress Series 173: 67–83.De Vittor, C., F. Relitti, M. Kralj, S. Covelli, and A. Emili. 2015. Oxygen, carbon, and nutrient exchanges at the sediment-water interface in the Mar Piccolo of Taranto (Ionian Sea, southern Italy). Environmental Science and Pollution Research. doi: 10.1007/s11356-015-4999-0 .Degraer, S., P. Meire, and M. Vincx. 2007. Spatial distribution, population dynamics and productivity of Spisula subtruncata: implications for Spisula fisheries in seaduck wintering areas. Marine Biology 152(4): 863–875.Dell’Anno, A., M.L. Mei, A. Pusceddu, and R. Danovaro. 2002. Assessing the trophic state and eutrophication of coastal marine systems: a new approach base on the biochemical composition of sediment organic matter. Marine Pollution Bulletin 44: 611–622.Demestre, M., Guillén, J., Soriano, S., Palanques, A., Sánchez, P., Puig, P. and L. Recasens. 2007. Vertical distribution of benthic communities and bioturbation rates in the sediment of the inner shelf. Rapport Commission International pour l’exploration scientifique de la Mer Mediterraneé 38.Deval, C.M., and D. Göktürk. 2008. Population structure and dynamics of the cut through Shell Spisula subtruncata (da Costa) in the Sea of Marmara, Turkey. Fisheries Research 89: 241–247.Ehrenhauss, S., and M. Huettel. 2004. Advective transport and decomposition of chain-forming planktonic diatoms in permeable sediments. Journal of Sea Research 52: 179–197.Emmerson, M.C., M. Solan, C. Emes, D.M. Paterson, and D. Raffaelli. 2001. Consistent patterns and the idiosyncratic effects of biodiversity in marine ecosystems. Nature 411: 73–77.Fabiano, M., D. Marrale, and C. Misic. 2003. Bacteria and organic dynamics during a bioremediation treatment of organic-rich harbour sediments. Marine Pollution Bulletin 46: 1164–1173.Fichez, R. 1991. Composition and fate of organic matter in submarine cave sediments; implications for the biogeochemical cycle of organic carbon. Oceanologica Acta 14: 369–377.Fogarty, M.J., M.P. Sissenwine, and E.B. Cohen. 1991. Recruitment variability and the dynamics of exploited populations. Trends in Ecology & Evolution 6: 241–246.Fraschetti, S., A. Covazzi, M. Chiantore, and G. Albertelli. 1997. Life-history traits of the bivalve Spisula subtruncata (da Costa) in the Ligurian Sea (North-Western Mediterranean): the contribution of newly settled juveniles. Scientia Marina 61(2): 25–32.Fuentes, A., I. Fernández-Segovia, I. Escriche, and J.A. Serra. 2009. Comparison of physico-chemical parameters and composition of mussels (Mytilus galloprovincialis Lmk.) from different Spanish origins. Food Chemistry 112: 295–302.Gadea, I., M. Rodilla, J. Sospedra, S. Falco, and T. Morata. 2013. Seasonal dynamics of the phytoplankton community in the Gandia coastal area, Southern Gulf of Valencia. Thalassas 29(1): 37–60.Gerino, M. 1990. The effects of bioturbation on particle distribution in Mediterranean coastal sediment. Preliminary result. Hydrobiologia 207: 251–258.GIG. 2008. WFD Intercalibration technical report for coastal and transitional waters in the Mediterranean ecoregion. In: WFD Intercalibration Technical Report–Part 3: Coastal and Transitional Waters. Available from: http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/10473/1/3010_08-volumecoast.pdf . Accessed 11 Nov 2015.Gilbert, F., P. Bonin, and G. Stora. 1995. Effect of bioturbation on denitrification in a marine sediment from the Western Mediterranean littoral. Hydrobiolgia 304: 49–58.Glud, R. 2005. Marine eutrophication and benthic metabolism. In Drainage basin nutrient inputs and eutrophication: an integrated approach, eds. Paul Wassmann and Kalle Olli, 147–154. Norway: University of Tromsø.Hargrave, B.T., M. Holmer, and C.P. Newcombe. 2008. Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Marine Pollution Bulletin 56(5): 810–824.Heilskov, A.C., and M. Holmer. 2001. Effects of benthic fauna on organic matter mineralization in fish-farm sediments: importance of size and abundance. Journal of Marine Science 58: 427–434.Heilskov, A.C., M. Alperin, and M. Holmer. 2006. Benthic fauna bio-irrigation effects on nutrient regeneration in fish farm sediments. Journal of Experimental Marine Biology and Ecology 339: 204–225.Holmer, M., and E. Kristensen. 1994. Anaerobic mineralization of fish farmwaste products in organic-rich sediments. In Changes in Fluxes in Estuaries, ed. Keith R. Dyer, and Robert Joseph Orth, 283–289. Denmark: Olsen and Olsen.Holmer, M., C.M. Duarte, and N. Marbá. 2003. Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66: 223–239.Hooper, D.U., F.S. Chapin III, J.J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J.H. Lawton, D.M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A.J. Symstad, J. Vandermeer, and D.A. Wardle. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75(1): 3–35.Huettel, M., P. Berg, and J.E. Kostka. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. Annual Review of Marine Science 6: 23–51.Jørgensen, B.B., and M.P. Revsbech. 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnology and Oceanography 30(1): 111–122.Karlson, K., S. Hulth, K. Ringdahl, and R. Rosenberg. 2005. Experimental recolonization of Baltic Sea reduced sediments: survival of benthic macrofauna and effects on nutrient cycling. Marine Ecology Progress Series 294: 35–49.Kristensen, E., G. Penha-Lopes, M. Delefosse, T. Valdemarsen, C.O. Quintana, and G.T. Banta. 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series 446: 285–302.Laverock, B., J.A. Gilbert, K. Tait, A.M. Osborn, and S. Widdicombe. 2011. Bioturbation: impact on the marine nitrogen cycle. Biochemical Society Transactions 39(1): 315–320.Lewis, C.V.W., J.R. Weinberg, and C.S. Davis. 2001. Population structure and recruitment of the bivalve Arctica islandica (Linnaeus, 1767) on Georges Bank from 1980-1999. Journal of Shellfish Research 20: 1135–1144.Lohrer, A.M., S.F. Thrush, and M.M. Gibbs. 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431: 1092–1095.López, N.I., C.M. Duarte, F. Vallespinós, J. Romero, and T. Alcoverro. 1998. The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. Journal of Experimental Marine Biology and Ecology 224: 155–165.Lundkvist, M., M. Grue, P.L. Friend, and M.R. Flindt. 2007. The relative contributions of physical and microbiological factors to cohesive sediment stability. Continental Shelf Research 27(8): 1143–1152.Mantoura, R.F.C., J.-M. Martin, and R. Wollast. 1991. Ocean margin process in global change. Chichester: Wiley & Sons.Martinez-Garcia, E., M.S. Carlsson, P. Sanchez-Jerez, J.L. Sánchez-Lizaso, C. Sanz-Lazaro, and M. Holmer. 2015. Effect of sediment grain size and bioturbation on decomposition of organic matter from aquaculture. Biogeochemistry 125: 133–148.Mayer, P., V.D. Estruch, and M. Jover. 2012. A two-stage growth model for gilthead sea bream (Sparus aurata) based on the thermal growth coefficient. Aquaculture 358-359: 6–13.McKindsey, C.W., P. Archambault, M.D. Callier, and F. Olivier. 2011. Influence of suspended and off-bottom mussel culture on the sea bottom and benthic habitats: a review. Canadian Journal of Zoology 89(7): 622–646.Mermillod-Blondin, F., and R. Rosenberg. 2006. Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquatic Sciences 68: 434–442.Mermillod-Blondin, F., F. François-Carcaillet, and R. Rosenberg. 2005. Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: an experimental study. Journal of Experimental Marine Biology and Ecology 315: 187–209.Michaud, E., G. Desrosiers, F. Mermillod-Blondin, B. Sundby, and G. Stora. 2005. The functional group approach to bioturbation: the effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. Journal of Experimental Marine Biology and Ecology 326: 77–88.Moodley, L., M. Steyaert, E. Epping, J.J. Middelburg, M. Vincx, P. van Avesaath, T. Moens, and K. Soetaert. 2008. Biomass-specific respiration rates of benthic meiofauna: demonstrating a novel oxygen micro-respiration system. Journal of Experimental Marine Biology and Ecology 357: 41–47.Morata, T., J. Sospedra, S. Falco, and M. Rodilla. 2012. Exchange of nutrients and oxygen across the sediment-water interface below a Sparus aurata marine fish farm in the north-western Mediterranean Sea. Journal of Soils and Sediments 12(10): 1623–1632.Morata, T., S. Falco, J. Sospedra, I. Gadea, and M. Rodilla. 2014. Benthic recovery after the cessation of a gilt-head seabream, Sparus aurata, farm in the Mediterranean Sea. Journal of the World Aquaculture Society. 45(4): 380–391.Mortimer, R.J.G., J.T. Davey, M.D. Krom, P.G. Watson, P.E. Frickers, and R.J. Clifton. 1999. The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber Estuary. Estuarine, Coastal and Shelf Science 48: 683–699.Newell, R. 1979. Biology of intertidal animals, 3ª edn. Faversham: Marine Ecological Surveys.Pastor, L., B. Deflandre, E. Viollier, C. Cathalot, E. Metzger, C. Rabouille, K. Escoubeyrou, E. Lloret, A.M. Pruski, G. Vétion, M. Desmalades, R. Buscail, and A. Grémare. 2011. Influence of the organic matter composition on benthic oxygen demand in the Rhône River prodelta (NW Mediterranean Sea. Continental Shelf Research 31: 1008–1019.Pearson, T., and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology 16: 229–311.Pernetta, J.C., and J.D. Milliman. 1995. Land-ocean interactions in the coastal zone. Implementation plan. Stockholm: IGBP.Piedecausa, M.A., F. Aguado-Giménez, J. Cerezo, M.D. Hernández, and B. García-García. 2012. Influence of fish food and faecal pellets on short-term oxygen uptake, ammonium flux and acid volatile sulphide accumulation in sediments impacted by fish farming and non-impacted sediments. Aquaculture Research 43: 66–74.Pihl, L., and R. Rosenberg. 1984. Food selection and consumption of the shrimp Crangon crangon in some shallow marine areas in western Sweden. Marine Ecology Progress Series 15: 159–168.Pratihary, A.K., S.W.A. Naqvi, H. Naik, B.R. Thorat, G. Narvenkar, B.R. Manjunatha, and V.P. Rao. 2009. Benthic fluxes in a tropical Estuary and their role in the ecosystem. Estuarine, Coastal and Shelf Science 85: 387–398.Pusceddu, A., A. Dell’Anno, M. Fabiano, and R. Danovaro. 2004. Quantity and biochemical composition of organic matter in marine sediments. In Mediterranean Marine Benthos: A Manual of methods for its sampling and study Vol. 11 (Suppl. 1), ed. Maria Cristina Gambi, and Marco Dappiano, 39–53. Genova: Biologia Marina Mediterranea.Pusceddu, A., A. Dell’Anno, M. Fabiano, and R. Danovaro. 2009. Quantity and bioavailability of sediment organic matter as signature of benthic trophic status. Marine Ecology Progress Series 375: 41–52.Pusceddu, A., S. Bianchelli, C. Gambi, and R. Danovaro. 2011. Assessment of benthic trophic status of marine coastal ecosystems: significance of meiofaunal rare taxa. Estuarine, Coastal and Shelf Science 93: 420–430.Queirós, A.M., S.N.R. Birchenough, J. Bremner, J.A. Godbold, R.E. Parker, A. Romero-Ramirez, H. Reiss, M. Solan, P.J. Somerfield, C. Van Colen, G. Van Hoey, and S. Widdicombe. 2013. A bioturbation classification of European marine infaunal invertebrates. Ecology and Evolution 3(11): 3958–3985.Raffaelli, D.G., J.A. Raven, and L.J. Poole. 1998. Ecological impact of green macroalgal blooms. Oceanography and Marine Biology, An Annual Review 36: 97–126.Røy, H., M. Hüttel, and B.B. Jørgensen. 2002. The role of small-scale sediment topography for oxygen flux across the diffusive boundary layer. Limnology and Oceanography 47(3): 837–847.Rueda, J.L., and A.C. Smaal. 2004. Variation of the physiological energetics of the bivalve Spisula subtruncata (da Costa, 1778) within an annual cycle. Journal of Experimental Marine Biology and Ecology 301: 141–157.Rullkötter, J. 2006. Organic matter: the driving force for early diagenesis. In Marine geochemistry, eds. Horst D. Schulz and Matthias Zabel, 125–168. Berlin: Springer-Verlag.Sardá, R., S. Pinedo, A. Gremare, and S. Taboada. 2000. Changes in the dynamics of shallow-bottom assemblages due to sand extraction in the Catalan Western Mediterranean Sea. ICES Journal of Marine Science 57: 1446–1453.Sebastiá, M.-T., and M. Rodilla. 2013. Nutrient and phytoplankton analysis of a Mediterranean coastal area. Environmental Management 51: 225–240.Sebastiá, M.-T., M. Rodilla, S. Falco, and J.-A. Sanchis. 2013. Analysis of the effects of wet and dry seasons on a Mediterranean river basin: consequences for coastal waters and its quality management. Ocean & Coastal Management 78: 45–55.Smith, V.H. 2002. Eutrophication of freshwater and coastal marine ecosystems. A global problem. Environmental Science and Pollution Research 10(2): 126–139.Solan, M., P. Batty, M.T. Bulling, and J.A. Godbold. 2008. How biodiversity affects ecosystem processes: implications for ecological revolutions and benthic ecosystem function. Aquatic Biology 2: 289–301.Sospedra, J., S. Falco, T. Morata, I. Gadea, and M. Rodilla. 2015. Benthic fluxes of oxygen and nutrients in sublittoral fine sands in a north-western Mediterranean coastal area. Continental Shelf Research 97: 32–42.Thamdrup, B., J.W. Hansen, and B.B. Jørgensen. 1998. Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiology Ecology 25: 189–200.Venturini, N., A.L. Pita, E. Brugnoli, F. García-Rodríguez, L. Burone, N. Kandratavicius, M. Hutton, and P. Muniz. 2012. Benthic trophic status of sediments in a metropolitan area (Rio de la Plata estuary): Linkages with natural and human pressures. Estuarine, Coastal and Shelf Science 112: 139–152.Viaroli, P., M. Bartoli, C. Bondavalli, R.R. Christian, G. Giordani, and M. Naldi. 1996. Macrophyte communities and their impact on benthic fluxes of oxygen, sulphide and nutrients in shallow eutrophic environments. Hydrobiologia 329: 105–119

    Análisis de la problemática de los RCD's y su gestión en obras de edificación

    Get PDF
    Treball final de Grau corresponent a la titulació d'Arquitectura Tècnica. Curs 2012/2013El presente proyecto se ha realizado con la intención de analizar la problemática que presentan los residuos de construcción y demolición en España, su tratamiento y gestión en obras de edificación. Se han estudiado las diferentes normativas que los regulan y sus efectos en nuestro país en comparación con el resto de países europeos, observando la evolución temporal de las cantidades de residuos gestionadas según han entrado en vigor las diferentes normativas y teniendo en cuenta la situación actual que vive el sector. También se ha analizado los diferentes métodos aplicables en obra sobre la gestión, tratamiento y cuantificación de los residuos, haciendo hincapié en éste último punto y realizando una comparativa entre una plantilla estandarizada de cuantificación de residuos que se ha observado que está totalmente generalizada y es utilizada en la inmensa mayoría de los estudios y planes de gestión de residuos realizados actualmente y un sistema de cuantificación basado en un estudio exhaustivo de las mediciones de un proyecto real, descomponiendo todas las unidades de obra y calculando los residuos generados elemento a elemento, basando los cálculos en la información obtenida tras entrevistas con profesionales del sector de la construcción con amplia experiencia profesional. Se ha establecido un sistema integral de gestión de residuos en obras, a partir del proyecto de ejecución de un edificio singular de uso administrativo en la calle Pescadores nº 19 de Castellón, adaptando los recursos disponibles a las necesidades generadas, mejorando la segregación en origen, fomentando su posterior valorización al estudiar los mercados de subproductos y observando si los costes son asumibles en relación con los beneficios obtenidos. Se han distribuido los residuos generados dentro de la línea temporal de ejecución del proyecto con el fin de dimensionar y adaptar los medios de que se va a disponer para la gestión de los mismos, todo ello siempre dentro del marco legal aplicable al respecto, para finalmente encontrar los aspectos, en cada fase del proyecto como son el diseño, la planificación y la ejecución, sobre los que es posible actuar minimizando la producción de residuos

    Uniqueness of the compactly supported weak solutions of the relativistic Vlasov-Darwin system

    Full text link
    We use optimal transportation techniques to show uniqueness of the compactly supported weak solutions of the relativistic Vlasov-Darwin system. Our proof extends the method used by Loeper in J. Math. Pures Appl. 86, 68-79 (2006) to obtain uniqueness results for the Vlasov-Poisson system.Comment: AMS-LaTeX, 21 page

    A realistic evaluation of indoor positioning systems based on Wi-Fi fingerprinting: The 2015 EvAAL–ETRI competition

    Get PDF
    Pre-print versionThis paper presents results from comparing different Wi-Fi fingerprinting algorithms on the same private dataset. The algorithms where realized by independent teams in the frame of the off-site track of the EvAAL-ETRI Indoor Localization Competition which was part of the Sixth International Conference on Indoor Positioning and Indoor Navigation (IPIN 2015). Competitors designed and validated their algorithms against the publicly available UJIIndoorLoc database which contains a huge reference- and validation data set. All competing systems were evaluated using the mean error in positioning, with penalties, using a private test dataset. The authors believe that this is the first work in which Wi-Fi fingerprinting algorithm results delivered by several independent and competing teams are fairly compared under the same evaluation conditions. The analysis also comprises a combined approach: Results indicate that the competing systems where complementary, since an ensemble that combines three competing methods reported the overall best results.We would like to thank Francesco Potortì, Paolo Barsocchi, Michele Girolami and Kyle O’Keefe for their valuable help in organizing and spread the EVAALETRI competition and the off-site track. We would also like to thank the TPC members Machaj Juraj, Christos Laoudias, Antoni Pérez-Navarro and Robert Piché for their valuable comments, suggestions and reviews. Parts of this work were funded in the frame of the Spanish Ministry of Economy and Competitiveness through the “Metodologiías avanzadas para el diseño, desarrollo, evaluación e integración de algoritmos de localización en interiores” project (Proyectos I+D Excelencia, código TIN2015-70202-P) and the “Red de Posicionamiento y Navegación en Interiores” network (Redes de Excelencia, código TEC2015-71426- REDT). Parts of this work were funded in the frame of the German federal Ministry of Education and Research programme "FHprofUnt2013" under contract 03FH035PB3 (Project SPIRIT).info:eu-repo/semantics/acceptedVersio

    Riesgo de padecer trastornos de la conducta alimentaria y rendimiento académico en adolescentes: proyecto DADOS

    Get PDF
    Introduction: eating disorders (ED) are complex multifactorial chronic diseases with adverse consequences on cognition in adolescence. Objectives: the main aim of the present study was to analyze the association between the risk of ED and academic performance in adolescents, considering the key role of weight status. Methods: a total of 261 adolescents (13.9 ± 0.3 years) from the DADOS (Deporte, Adolescencia y Salud) Study were included in the analysis. The risk of ED was assessed using the Sick Control on Fast Food (SCOFF) questionnaire. Weight status was assessed by body mass index (BMI) (kg/m2 ). Academic performance was assessed through final grades and through the Spanish version of the SRA Test of Educational Ability (TEA). Results: the risk of ED was negatively associated with academic grades, and with verbal and numeric abilities measured through TEA. Adolescents with non-eating disorder risk showed higher scores in academic grades (but not in the TEA components). Overweight and obese adolescents reported higher risk of ED. Conclusions: the risk of ED is negatively associated with academic performance, being higher in overweight and obese adolescents. Interventional programs aimed to improve academic performance should take into account weight status and the risk of ED.Introducción: los trastornos de la conducta alimentaria (TCA) son alteraciones psicológicas severas con graves consecuencias sobre la función cognitiva durante la adolescencia. Objetivos: el principal objetivo de este estudio fue analizar la asociación entre el riesgo de padecer TCA y el rendimiento académico en adolescentes, considerando el papel clave de la composición corporal. Métodos: la muestra estuvo formada por un total de 261 adolescentes (13,9 ± 0,3 años), participantes del proyecto DADOS (Deporte, Adolescencia y Salud). La versión española del cuestionario Sick Control on Fast Food (SCOFF) se utilizó para determinar el riesgo de padecer TCA. La composición corporal se evaluó mediante el índice de masa corporal (IMC) (kg/m2 ). El rendimiento académico fue evaluado mediante las notas finales y mediante la versión española del cuestionario SRA Test of Educational Ability (TEA). Resultados: el riesgo de padecer TCA estuvo inversamente asociado con las notas y con las habilidades verbales y numéricas medidas mediante el TEA. Los adolescentes que no presentaban riesgo de padecer TCA mostraron calificaciones más altas en las notas (pero no en los componentes del cuestionario TEA). Los adolescentes con sobrepeso u obesidad reportaron un mayor riesgo de padecer TCA. Conclusiones: el riesgo de padecer TCA está asociado de forma inversa con el rendimiento académico y es más elevado en adolescentes con sobrepeso u obesidad. Las intervenciones cuyo objetivo sea mejorar el rendimiento académico deberían tener en cuenta la composición corporal y el riesgo de padecer TCA

    Using Satellite-Derived Fire Arrival Times for Coupled Wildfire-Air Quality Simulations at Regional Scales of the 2020 California Wildfire Season

    Get PDF
    Wildfire frequency has increased in the Western US over recent decades, driven by climate change and a legacy of forest management practices. Consequently, human structures, health, and life are increasingly at risk due to wildfires. Furthermore, wildfire smoke presents a growing hazard for regional and national air quality. In response, many scientific tools have been developed to study and forecast wildfire behavior, or test interventions that may mitigate risk. In this study, we present a retrospective analysis of 1 month of the 2020 Northern California wildfire season, when many wildfires with varying environments and behavior impacted regional air quality. We simulated this period using a coupled numerical weather prediction model with online atmospheric chemistry, and compare two approaches to representing smoke emissions: an online fire spread model driven by remotely sensed fire arrival times and a biomass burning emissions inventory. First, we quantify the differences in smoke emissions and timing of fire activity, and characterize the subsequent impact on estimates of smoke emissions. Next, we compare the simulated smoke to surface observations and remotely sensed smoke; we find that despite differences in the simulated smoke surface concentrations, the two models achieve similar levels of accuracy. We present a detailed comparison between the performance and relative strengths of both approaches, and discuss potential refinements that could further improve future simulations of wildfire smoke. Finally, we characterize the interactions between smoke and meteorology during this event, and discuss the implications that increases in regional smoke may have on future meteorological conditions

    Variabilidad estacional de la comunidad de fitoplancton de las aguas superficiales de la zona costera de Gandía en el sur del Golfo de Valencia

    Full text link
    [EN] Seasonal variability in the phytoplankton community of the coastal area of Gandia in the south of the Gulf of Valencia (Western Mediterranean Sea) was examined in relation to physical and chemical surface water variables (i.e. salinity, nutrients, dissolved oxygen and temperature). This small area presents most of the point and non-point nutrients inputs that affect coastal areas as wastewater discharges through submarine outfall, river discharges and groundwater discharges from a detritic aquifer. Furthermore, surface channels that drain the Safor wetland, which is used mainly for agricultural crops, outflow into the confined harbour. The main objective of the study was to observe the variations in phytoplankton groups as a response to environmental variables during different seasons and understand which species could be used as indicators of anthropogenic pressure. For this purpose, the taxonomic composition of the micro-phytoplankton communities at 32 fixed stations was determined in four sampling campaigns from summer 2010 to spring 2011. The results indicate that nutrient inputs mainly from the Serpis river and channels that drain the Safor Wetland determine the composition and abundance of the phytoplankton community, and that several key environmental factors such as water temperature, radiation, nutrients, and the molar ratios of nutrients influence seasonal phytoplankton assemblages. However, the discharge of effluent from a sewage treatment plant through the submarine outfall did not appear to have a significant impact on the phytoplankton community. The phytoplankton community comprised two main groups: diatoms and dinoflagellates and a total of 108 taxa were identified. The diatom population primarily flourished in autumn and winter whereas in spring, dinoflagellate bloom occurred with high radiation, very low DIP and high DIN:DIP and low DSi:DIN molar ratios. In this paper we discuss the possible rationale for these nutrient changes. Furthermore, potentially blooming species were detected in the Gandia harbour and in the mouth of the Serpis river at Venecia Beach.[ES] La variabilidad estacional de la comunidad de fitoplancton de las aguas superficiales de la zona costera de Gandía en el sur del Golfo de Valencia (Mediterráneo occidental) fue examinada, teniendo en cuenta su relación con diferentes variables físicas y químicas (p.e. salinidad, nutrientes, oxígeno disuelto, temperatura, etc.). En esta pequeña área se dan la mayoría de las entradas de nutrientes, tanto puntuales como difusas, que afectan las áreas costeras: descargas de aguas residuales mediante emisarios submarinos, aportes fluviales y descargas de aguas subterráneas procedentes de acuíferos costeros. Además, los canales superficiales que drenan el humedal de La Safor, cuyo uso fundamental es la agricultura, vierten en las aguas confinadas del puerto. El objetivo principal de este estudio fue observar las variaciones de los grupos de fitoplancton como respuesta a las variaciones ambientales en diferentes estaciones del año, y determinar que especies pueden ser utilizadas como indicadores de presión antrópica. Para ello, se determinó la composición taxonómica de la comunidad de micro-fitoplancton en 32 puntos de muestreo fijos en cuatro campañas de muestreo, desde verano de 2010 hasta primavera de 2011. Los resultados muestran que la entrada de nutrientes, principalmente a través del Río Serpis y los canales que drenan el humedal, determinan la composición y abundancia de la comunidad de fitoplancton. Además diversos factores ambientales clave como temperatura del agua, radiación, nutrientes, así como las relaciones entre nutrientes influyen en las diferentes asociaciones de fitoplancton observadas en cada estación. Por otro lado, la descarga del efluente procedente de la depuradora de aguas residuales no tuvo un impacto significativo sobre la comunidad de fitoplancton. La comunidad de fitoplancton estuvo formada principalmente por dos grupos: diatomeas y dinoflagelados. Se identificaron un total de 108 taxones. Las diatomeas proliferaron principalmente en otoño e invierno. Los dinoflagelados proliferaron en primavera, bajo condiciones de elevada radiación, baja concentración de DIP, razones DIN:DIP elevadas y razones DSi:DIN bajas. En este documento se discute la justificación de los cambios en la concentración de nutrientes. Además, se detectaron especies potencialmente nocivas en el Puerto de Gandía y en la desembocadura del río Serpis, en la playa de Venecia.Financial support for this research was provided by Ministry of Education, Culture and Sport, Government of Spain, through the Training Program for University Teachers (FPU). We would like to express our deepest thanks to Margarita Fernández and Vanessa Castan of IRTA (Research Institute of Technology, food and Agriculture).Gadea, I.; Rodilla, M.; Sospedra, J.; Falco, S.; Morata, T. (2013). Seasonal dynamics of the phytoplankton community in the Gandia coastal area, southern Gulf of Valencia. Thalassas. Revista de Ciencias del Mar. 29(1):35-58. http://hdl.handle.net/10251/46133S355829
    corecore